Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Amino-4,6-dimethylpyrimidine– benzoic acid (1/1)

A-Lan Meng, Jun-E Huang, Bin Zheng and Zhen-Jiang Li*

Qingdao University of Science and Technology, Qingdao 266061, People's Republic of China

Correspondence e-mail: zjli126@126.com

Received 11 May 2009; accepted 31 May 2009

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.004 Å; R factor = 0.053; wR factor = 0.137; data-to-parameter ratio = 13.6.

The crystal of the title compound, $C_6H_9N_3 \cdot C_7H_6O_2$, contains tetrameric hydrogen-bonded units comprising a central pair of 2-aminopyrimidine molecules linked across a centre of inversion by $N-H \cdot \cdot \cdot N$ hydrogen bonds and two pendant benzoic acid molecules attached through $N-H \cdot \cdot \cdot O$ and $O-H \cdot \cdot \cdot N$ hydrogen bonds. These hydrogen-bonded units are arranged into layers in (002).

Related literature

For the biological activity of pyrimidine and aminopyrimidine derivatives, see: Hunt *et al.* (1980); Baker & Santi (1965). For related structures, see: Skovsgaard & Bond (2009); Fun *et al.* (2006); Wang *et al.* (2007); Schwalbe & Williams (1982); Hu *et al.* (2002); Chinnakali *et al.* (1999).

Experimental

Crystal data $C_6H_9N_3 \cdot C_7H_6O_2$ $M_r = 245.28$ Monoclinic, $P2_1/c$ a = 6.7019 (9) A

b = 7.6466 (10) Å
c = 25.285 (3) Å
$\beta = 91.360 \ (2)^{\circ}$
V = 1295.4 (3) Å

<i>Z</i> =	4				
Мо	Κα	r	ad	iat	ion
$\mu =$	0.0	9	mı	m ⁻	-1

Data collection

Bruker SMART CCD diffractometer

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.985, T_{\max} = 0.991$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.053$ 167 parameters $wR(F^2) = 0.137$ H-atom parameters constrainedS = 1.01 $\Delta \rho_{max} = 0.22$ e Å $^{-3}$ 2273 reflections $\Delta \rho_{min} = -0.19$ e Å $^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1−H1···N1	0.82	1.82	2.606 (2)	160
$N3-H3A\cdots O2$	0.86	2.16	3.003 (3)	168
$N3 - H3B \cdot \cdot \cdot N2^{i}$	0.86	2.25	3.098 (3)	169

Symmetry code: (i) -x, -y + 2, -z + 1.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank the Natural Science Foundation of China (grant No. 50572041) and the Science Item of Shandong Province (grant No. 2006 GG2203014).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2374).

References

- Baker, B. R. & Santi, D. V. (1965). J. Pharm. Sci. 54, 1252-1257.
- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chinnakali, K., Fun, H.-K., Goswami, S., Mahapatra, A. K. & Nigam, G. D. (1999). Acta Cryst. C55, 399–401.
- Fun, H.-K., Goswami, S., Jana, S. & Chantrapromma, S. (2006). Acta Cryst. E62, 05332–05334.
- Hu, M.-L., Ye, M.-D., Zain, S. M. & Ng, S. W. (2002). Acta Cryst. E58, o1005– 01007.
- Hunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). J. Biochem. 187, 533–536.
- Schwalbe, C. H. & Williams, G. J. B. (1982). Acta Cryst. B38, 1840-1843.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Skovsgaard, S. & Bond, A. D. (2009). CrystEngComm, 11, 444-453.
- Wang, J., Liu, L., Liu, G., Zhang, L. & Jia, D. (2007). Struct. Chem. 18, 59-63.

 $0.18 \times 0.15 \times 0.10 \; \rm mm$

6594 measured reflections

2273 independent reflections

1228 reflections with $I > 2\sigma(I)$

T = 295 K

 $R_{\rm int} = 0.104$

supplementary materials

Acta Cryst. (2009). E65, 01595 [doi:10.1107/S1600536809020649]

2-Amino-4,6-dimethylpyrimidine-benzoic acid (1/1)

A.-L. Meng, J.-E. Huang, B. Zheng and Z.-J. Li

Comment

Pyrimidine and aminopyrimidine derivatives are biologically important compounds as they occur in nature as components of nucleic acids. Some aminopyrimidine derivatives are used as antifolate drugs (Hunt *et al.*, 1980; Baker & Santi, 1965). The crystal structures of aminopyrimidine derivatives (Schwalbe & Williams, 1982), aminopyrimidine carboxylates (Hu *et al.*, 2002) and co-crystal structures (Chinnakali *et al.*, 1999; Skovsgaard & Bond, 2009) have been reported.

The title compound (Fig. 1) was obtained as the product of an attempted synthesis of benzoic acid and 2-amino-4,6-dimethylpyrimidine in acetone. The bond lengths and angles in the pyrimidine ring and phenyl ring are generally normal (Fun *et al.*, 2006). The molecules associate through O—H…N, N—H…O and N—H…N hydrogen bonds into centrosymmetic tetrameric units. These units pack into stacked layers in the (002) planes (Fig. 2).

Experimental

Single crystals of the title compound were obtained by reaction of benzoic acid (0.2 mmol) and 2-amino-4,6-dimethylpyrimidine (0.2 mmol) in refluxing acetone (50 ml). Single crystals suitable for X-ray analysis were obtained by recrystallization from ethanol solution at room temperature.

Refinement

H atoms were fixed geometrically and allowed to ride on their attached atoms, with N—H = 0.86 Å, C—H = 0.93 or 0.96 Å, and with $U_{iso}(H) = 1.5 U_{eq}(C)$ (for CH₃) or 1.2 $U_{eq}(C)$ (for CH₂, aromatic CH and NH₂).

Figures

Fig. 1. Molecular structure with displacement ellipsoids drawn at the 30% probability level for non-H atoms. Dashed lines denote hydrogen bonds.

Fig. 2. Packing diagram showing one layer of molecules connected by N—H…O and O—H…N hydrogen bonds (dashed lines).

2-Amino-4,6-dimethylpyrimidine-benzoic acid (1/1)

Crystal data	
$C_6H_9N_3$ · $C_7H_6O_2$	$F_{000} = 520$
$M_r = 245.28$	$D_{\rm x} = 1.258 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 167 reflections
a = 6.7019 (9) Å	$\theta = 1.6 - 25.0^{\circ}$
b = 7.6466 (10) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 25.285 (3) Å	T = 295 K
$\beta = 91.360 \ (2)^{\circ}$	Block, colourless
$V = 1295.4 (3) \text{ Å}^3$	$0.18\times0.15\times0.10~mm$
Z = 4	

Data collection

Bruker SMART CCD diffractometer	2273 independent reflections
Radiation source: fine-focus sealed tube	1228 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.104$
T = 295 K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.6^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -7 \rightarrow 7$
$T_{\min} = 0.985, \ T_{\max} = 0.991$	$k = -9 \rightarrow 9$
6594 measured reflections	$l = -22 \rightarrow 30$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.053$	$w = 1/[\sigma^2(F_o^2) + (0.0352P)^2 + 0.012P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.137$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.01	$\Delta \rho_{max} = 0.22 \text{ e } \text{\AA}^{-3}$
2273 reflections	$\Delta \rho_{min} = -0.19 \text{ e } \text{\AA}^{-3}$
167 parameters	Extinction correction: SHELXL, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.0077 (16)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.6583 (2)	0.6591 (2)	0.41923 (6)	0.0678 (5)
H1	0.5870	0.7100	0.4402	0.102*
O2	0.3940 (3)	0.6933 (3)	0.36625 (7)	0.0787 (6)
N1	0.4633 (3)	0.7645 (2)	0.50129 (7)	0.0482 (5)
N2	0.1976 (3)	0.9074 (2)	0.54612 (8)	0.0560 (6)
N3	0.1836 (3)	0.8632 (2)	0.45633 (8)	0.0646 (6)
H3A	0.2332	0.8250	0.4275	0.078*
H3B	0.0689	0.9137	0.4557	0.078*
C1	0.6891 (4)	0.5714 (3)	0.33125 (9)	0.0540 (6)
C2	0.8886 (4)	0.5334 (3)	0.34037 (10)	0.0662 (7)
H2	0.9484	0.5593	0.3730	0.079*
C3	0.9993 (5)	0.4573 (4)	0.30126 (13)	0.0813 (9)
H3	1.1337	0.4326	0.3075	0.098*
C4	0.9124 (6)	0.4184 (4)	0.25352 (13)	0.0892 (10)
H4	0.9866	0.3641	0.2276	0.107*
C5	0.7167 (6)	0.4587 (4)	0.24346 (11)	0.0931 (10)
Н5	0.6586	0.4332	0.2106	0.112*
C6	0.6032 (4)	0.5382 (4)	0.28248 (10)	0.0754 (8)
H6	0.4708	0.5683	0.2754	0.090*
C7	0.5664 (4)	0.6473 (3)	0.37388 (10)	0.0542 (7)
C8	0.2837 (4)	0.8443 (3)	0.50166 (10)	0.0497 (6)
C9	0.5618 (3)	0.7431 (3)	0.54739 (9)	0.0522 (6)
C10	0.4805 (4)	0.8019 (3)	0.59401 (10)	0.0620(7)
H10	0.5481	0.7868	0.6262	0.074*
C11	0.2973 (4)	0.8831 (3)	0.59146 (10)	0.0579 (7)
C12	0.7598 (4)	0.6537 (3)	0.54573 (11)	0.0699 (8)
H12A	0.7401	0.5309	0.5397	0.105*
H12B	0.8303	0.6706	0.5788	0.105*
H12C	0.8361	0.7022	0.5176	0.105*
C13	0.1975 (4)	0.9484 (3)	0.64045 (10)	0.0793 (9)
H13A	0.1886	1.0737	0.6393	0.119*
H13B	0.2743	0.9136	0.6712	0.119*
H13C	0.0658	0.8996	0.6421	0.119*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0593 (11)	0.0969 (15)	0.0473 (11)	0.0084 (10)	0.0053 (9)	-0.0141 (10)
O2	0.0568 (12)	0.1232 (16)	0.0564 (12)	0.0167 (11)	0.0055 (9)	-0.0012 (10)
N1	0.0425 (11)	0.0546 (12)	0.0480 (12)	-0.0031 (9)	0.0092 (9)	-0.0005 (9)
N2	0.0584 (13)	0.0594 (13)	0.0510 (13)	-0.0063 (10)	0.0179 (10)	-0.0042 (11)
N3	0.0552 (13)	0.0919 (16)	0.0472 (13)	0.0168 (11)	0.0084 (10)	-0.0057 (11)
C1	0.0620 (17)	0.0566 (15)	0.0439 (15)	-0.0070 (13)	0.0109 (12)	0.0003 (12)
C2	0.0670 (19)	0.0707 (18)	0.0617 (17)	-0.0002 (14)	0.0157 (14)	-0.0015 (14)
C3	0.081 (2)	0.085 (2)	0.080 (2)	0.0071 (17)	0.0337 (18)	-0.0012 (18)
C4	0.119 (3)	0.073 (2)	0.078 (2)	-0.003 (2)	0.056 (2)	-0.0027 (18)
C5	0.119 (3)	0.113 (3)	0.0486 (19)	-0.020 (2)	0.0181 (18)	-0.0134 (17)
C6	0.0767 (19)	0.098 (2)	0.0513 (17)	-0.0100 (16)	0.0084 (14)	-0.0062 (16)
C7	0.0529 (16)	0.0653 (17)	0.0448 (16)	-0.0014 (13)	0.0080 (13)	0.0025 (12)
C8	0.0524 (15)	0.0516 (14)	0.0456 (15)	-0.0068 (12)	0.0121 (12)	-0.0030 (12)
C9	0.0502 (15)	0.0550 (16)	0.0516 (16)	-0.0112 (12)	0.0041 (12)	0.0032 (12)
C10	0.0705 (19)	0.0703 (17)	0.0454 (16)	-0.0090 (15)	0.0058 (13)	0.0030 (13)
C11	0.0694 (18)	0.0566 (16)	0.0486 (16)	-0.0128 (14)	0.0196 (13)	-0.0031 (12)
C12	0.0561 (17)	0.0836 (18)	0.0700 (18)	0.0001 (14)	0.0004 (13)	0.0025 (15)
C13	0.100 (2)	0.0828 (19)	0.0562 (17)	-0.0108 (17)	0.0289 (15)	-0.0094 (15)

Geometric parameters (Å, °)

1.292 (3)	C4—C5	1.365 (4)
0.820	C4—H4	0.930
1.218 (3)	C5—C6	1.399 (4)
1.336 (3)	С5—Н5	0.930
1.350 (3)	С6—Н6	0.930
1.326 (3)	C9—C10	1.385 (3)
1.364 (3)	C9—C12	1.494 (3)
1.322 (3)	C10-C11	1.376 (3)
0.860	C10—H10	0.930
0.860	C11—C13	1.507 (3)
1.372 (3)	C12—H12A	0.960
1.382 (3)	C12—H12B	0.960
1.489 (3)	C12—H12C	0.960
1.379 (4)	C13—H13A	0.960
0.930	С13—Н13В	0.960
1.361 (4)	C13—H13C	0.960
0.930		
109.5	O1—C7—C1	114.2 (2)
118.13 (19)	N3—C8—N1	118.5 (2)
116.7 (2)	N3—C8—N2	117.4 (2)
120.0	N1—C8—N2	124.1 (2)
120.0	N1—C9—C10	120.4 (2)
120.0	N1—C9—C12	116.9 (2)
	1.292 (3) 0.820 1.218 (3) 1.336 (3) 1.350 (3) 1.326 (3) 1.322 (3) 0.860 0.860 1.372 (3) 1.382 (3) 1.382 (3) 1.379 (4) 0.930 1.361 (4) 0.930 109.5 118.13 (19) 116.7 (2) 120.0 120.0	1.292 (3) $C4-C5$ 0.820 $C4-H4$ $1.218 (3)$ $C5-C6$ $1.336 (3)$ $C5-H5$ $1.350 (3)$ $C6-H6$ $1.326 (3)$ $C9-C10$ $1.364 (3)$ $C9-C12$ $1.322 (3)$ $C10-C11$ 0.860 $C10-H10$ 0.860 $C11-C13$ $1.372 (3)$ $C12-H12A$ $1.382 (3)$ $C12-H12B$ $1.489 (3)$ $C12-H12C$ $1.379 (4)$ $C13-H13B$ 0.930 $C13-H13B$ $1.361 (4)$ $C13-H13C$ 0.930 $01-C7-C1$ $118.13 (19)$ $N3-C8-N1$ $116.7 (2)$ $N3-C8-N2$ 120.0 $N1-C9-C10$ 120.0 $N1-C9-C10$

C6—C1—C2	119.6 (2)	C10-C9-C12	122.7 (2)
C6—C1—C7	119.7 (2)	C11—C10—C9	118.4 (2)
C2—C1—C7	120.7 (2)	C11—C10—H10	120.8
C3—C2—C1	120.3 (3)	С9—С10—Н10	120.8
С3—С2—Н2	119.9	N2-C11-C10	122.3 (2)
C1—C2—H2	119.9	N2-C11-C13	116.1 (3)
C4—C3—C2	120.1 (3)	C10-C11-C13	121.6 (3)
С4—С3—Н3	119.9	C9—C12—H12A	109.5
С2—С3—Н3	119.9	C9—C12—H12B	109.5
C3—C4—C5	120.3 (3)	H12A—C12—H12B	109.5
C3—C4—H4	119.8	C9—C12—H12C	109.5
С5—С4—Н4	119.8	H12A—C12—H12C	109.5
C4—C5—C6	120.2 (3)	H12B-C12-H12C	109.5
С4—С5—Н5	119.9	C11—C13—H13A	109.5
С6—С5—Н5	119.9	С11—С13—Н13В	109.5
C1—C6—C5	119.4 (3)	H13A—C13—H13B	109.5
С1—С6—Н6	120.3	C11—C13—H13C	109.5
С5—С6—Н6	120.3	H13A—C13—H13C	109.5
O2—C7—O1	123.4 (2)	H13B—C13—H13C	109.5
O2—C7—C1	122.4 (2)		
C6—C1—C2—C3	-2.1 (4)	C9—N1—C8—N3	-178.84 (19)
C7—C1—C2—C3	177.7 (2)	C9—N1—C8—N2	1.2 (3)
C1—C2—C3—C4	-0.3 (4)	C11—N2—C8—N3	178.20 (19)
C2—C3—C4—C5	1.8 (5)	C11—N2—C8—N1	-1.8 (3)
C3—C4—C5—C6	-0.9 (5)	C8—N1—C9—C10	-0.1 (3)
C2-C1-C6-C5	3.0 (4)	C8—N1—C9—C12	179.75 (19)
C7—C1—C6—C5	-176.8 (2)	N1-C9-C10-C11	-0.4 (3)
C4—C5—C6—C1	-1.5 (4)	C12-C9-C10-C11	179.9 (2)
C6—C1—C7—O2	-5.3 (4)	C8—N2—C11—C10	1.4 (3)
C2—C1—C7—O2	175.0 (2)	C8—N2—C11—C13	-178.11 (19)
C6—C1—C7—O1	174.4 (2)	C9—C10—C11—N2	-0.3 (4)
C2-C1-C7-O1	-5.3 (3)	C9—C10—C11—C13	179.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$
O1—H1…N1	0.82	1.82	2.606 (2)	160
N3—H3A…O2	0.86	2.16	3.003 (3)	168
N3—H3B···N2 ⁱ	0.86	2.25	3.098 (3)	169
Symmetry codes: (i) $-x$, $-y+2$, $-z+1$.				

Fig. 2